
Embedded software developers are responsible for the flawless exe-

cution of their software in a real-time embedded system. They must

ensure that both the input and output data-flow processing and sys-

tem time constraints are validated to design specifications. Valid

measurements, however, can only be performed on the actual target

system; this requires very close collaboration with the hardware

developers on the team.

When debugging embedded target systems, the digital design team

often encounters four types of problems:

Logical Problems. These are simple mistakes in logic design or

coding, or an incorrect design assumption. These problems are

often caught by the hardware simulator or by the software debug-

ger. This type of problem often comprises 80% of the debug prob-

lems encountered, but often only consume 20% of the debug

time. While tedious and time-consuming to find, they are relatively

straightforward to fix. The remaining 20% of the problems fall into

the remaining three categories and may take up to 80% of the

debug time to find and fix.

Hardware/Software Interaction Problems. These problems are

more difficult to debug and often require some form of physical

trace tool. The logic analyzer has been the traditional physical

trace tool of choice for such problems. Logic analyzers provide

both the hardware and software analysis capability to examine the

interaction of the hardware and the software in a target system.

With the ability to correlate specific signals with the processor’s

instruction execution flow, the hardware and software developers

can debug complex problems such as why certain instructions

cause memory errors or why a specific data pattern causes

crosstalk-induced glitches on the processor’s data bus.

Real-time Software Problems. These are the most difficult prob-

lems to debug – problems that occur only when the target system

is running at full speed. Logic analyzers excel in solving these

problems because they run at the full speed of the target system

and provide powerful triggering and deep trace memory to capture

the most elusive real-time faults.

Figure 1. Source Window where user’s source code is displayed.

Using The TLA700
Series Logic
Analyzers Integrated
Software Tools

Technical Brief

www.tektronix.com1

Crash Problems. Embedded systems differ from non-embedded

systems (e.g., PCs or workstations) in that they generally do not

have protection from an errant program crashing the target system.

Robust operating systems, such as those found on PCs or worksta-

tions, have a variety of mechanisms to isolate the system from a

misbehaving application – embedded systems often do not. Thus

when the software on an embedded system crashes, it often takes

the whole target system down, thereby losing any information that

might be useful in determining the root cause. Logic analyzers,

especially those with deep acquisition memory, can provide the

real-time history of the target system, up to and including the

crash, to aid in quickly determining the cause of the crash.

Solving these problems requires a tool that both the embedded soft-

ware and hardware developer can use to resolve the difficult cross-

domain problems that span the range from high-level language source

code down to the underlying signal behavior.

The TLA700 Series logic analyzer provides a set of tools for the

embedded software developer that acquire data from a target system

at the analog, timing, and state levels, thereby providing a “big pic-

ture” overview of target system behavior from signals to source code.

All of these tools are standard on every TLA700 – no optional tools to

buy or configure. Four such tools are discussed here:

1) High-level language source code support

2) Performance analysis

3) Symbol support

4) Magnitude mode support

High-Level-Language Source Code
Support

The TLA700’s High Level Language (HLL) source code support, which

is integrated and standard on every TLA700, consists of a data window

– the Source Window – in the TLA700 application where the user’s

source code is displayed (see Figure 1). Three things are required to

use this support:

1) Which column in the TLA700’s Listing Window (usually the processor’s

Address column) that the TLA700’s Source Window should link to.

2) Where the object file (which must be compiled and linked for debug) which

contains the source symbols is located.

3) Where the source files are located.

The key to how the Source Window operates is the symbol file. In

addition to the name and value of the symbol, it contains the line num-

ber and address of each source line. With this information, the Source

Window can correlate the source code that the developer wrote with

the acquired data in the Listing Window.

There are a variety of mechanisms for navigating the data. Within the

Source Window, you can move to the next or previous executed source

statement using the toolbar buttons, scroll or page through the source

file using the window sliders, move either of the two cursors, or switch

to a different source file. From the Listing Window, you can move

either of the cursors. When you move a cursor in either the Source or

Listing Window, the corresponding cursor in the other window moves

as well.

You can set a trigger condition based on the source line in the Source

Window. You can also control all of the various window properties

(e.g., variable font size, colors, show or hide line numbers, and tab

spacing).

You can have multiple source windows for either different source files

or for multi-processor support.

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com2

Symbolic Support

The symbolic information contained within the object file that is loaded

on the target system is the key to debugging at a symbolic and HLL

source code level.

There are two types of symbol files:

1) Pattern Symbol Files. Pattern symbols have one value (the pattern)

which can contain don’t care (X) values. Pattern symbols are often

used for displaying variable names and in the control group of a

disassembler display.

2) Range Symbol Files. Range symbols have two values – an upper

and lower bound – but cannot contain don’t care (X) values. Range

symbols are often used in the address group of a disassembler dis-

play. Range symbols are found in the software executable file or

object file that is downloaded to the target system. Three types of

symbols can be found within this file:

Function – Range symbols describing the beginning and ending addresses

of software functions.

Variable – Range symbols describing the beginning and ending addresses

of software variables.

Source Code – Range symbols describing the beginning and ending

addresses of source statements. The TLA700 Source Window uses these

range symbols to perform the linkage with the acquired data in the Listing

Window. Any missing line numbers contained either comments or non-exe-

cutable source lines. The “Beg” and “End” columns are generated by soft-

ware tools to provide statement-level granularity within a line which the

TLA700 Source Window can use to highlight individual statements in a sin-

gle source line.

The TLA700’s symbol file capability is integrated and standard on

every TLA700. Symbols are loaded directly from the object module or

executable file (see Figure 2). Symbol files must contain absolute

addresses. There are no limits to the number of symbols that can be

loaded (limited only by the amount of virtual memory in the TLA700’s

Windows® 95 PC). The following file formats are supported:

– IEEE695

– OMFx86

– COFF

– ELF/Dwarf

– ELF/Stabs

– ASCII

Once loaded, the same symbols are shared between the Source

Window, Listing Window, Histogram Window (Performance Analysis),

and LA Module trigger.

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com 3

Figure 2. Loading symbols.

In the Load Symbol operation, you can access the Load Symbol

Options which allows you to choose which symbols to load, limit the

number of symbols to load, limit the address range of symbols to load,

and add/subtract an offset to all symbols (see Figure 3).

You can also export a loaded symbol file and edit the symbols using

any word processor such as WordPad and then reload the edited sym-

bol file. By exporting a loaded symbol file, you can view what the actu-

al values are for each symbol. Understanding the contents of a loaded

symbol file can be very useful in understanding how the various

TLA700 software tools operate. For additional information, please refer

to Appendix B of the TLA700 User’s Manual.

Performance Analysis Support

Today’s embedded software applications are getting increasingly

larger, which makes it difficult to see the “big picture” of the overall

flow and execution time of the software. Often times, the embedded

software developer gets the code functioning correctly, but perform-

ance tuning is usually done near the end of the project. An often quot-

ed rule of thumb is that “20% of the code executes 80% of the time;”

however, the big question is which 20% of the code! What’s needed is

some form of overview tool to show which of the hundreds of software

modules are consuming the majority of the processor’s execution time.

The TLA 700’s Performance Analysis (PA) capability shows where the

software is spending its time. With this information, the embedded

software developer can quickly zero in on the routines that, if opti-

mized, have the greatest payback in improved performance. The

TLA700’s PA support, which is integrated and standard on every

TLA700, provides two measurement types:

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com4

Figure 3. Symbol options.

Range Overview (Channel Groups). With range overview, the

TLA700 analyzes the data acquired for a user-selected logic ana-

lyzer module group and displays the hits in each range in a his-

togram format. It can use the same loaded symbol table (with

absolute addresses) with no limit on the number of ranges. Ranges

can be generated and displayed using either numbers (linear or

logarithmic) or from a loaded symbol file. Data can easily be sorted

(ascending or descending) by either range, count, or percent. The

Histogram window can be split to view both the beginning and end

of the ranges. Various properties can be selected including colors,

variable fonts, and channel polarity. You can also choose by percent

based upon all samples or only matched samples (see Figure 4).

Range overview is especially useful for providing information on

which software modules consume the most execution time. The

developer must be careful, however, to ensure that recorded hits

are actually measuring processor execution time, not prefetch or

other non-execution activity.

Single Event (Counter/Timer). Often times, however, developers

have a routine that has a specified execution time for which they

need to validate that it never exceeds the specification. Single

event is a measurement mode that uses the logic analyzer mod-

ule’s 4 ns counter/timers to display the range of execution

time/counts for a single routine. By using the TLA700’s logic ana-

lyzer trigger machine to define an event, you can measure that

event with 4 ns resolution. The resulting display shows the mini-

mum, maximum, and average time a single event takes to execute

over multiple runs (see Figure 5).

This capability is useful in monitoring time-critical routines such as

interrupt/exception handlers to ensure that the system specification

for maximum service time is never violated.

You can have multiple histogram windows for each logic analyzer

module. This is useful for multi-processor support.

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com 5

Figure 4. Range overview.

Figure 5. Single event (counter/timer).

Magnitude Mode Support

An often overlooked, but useful, feature of the TLA700 for debugging

embedded software is the TLA700’s Magnitude Mode which is avail-

able within the Waveform Window. Magnitude Mode displays the value

of each group versus time. This capability is valuable as a “digital-to-

analog” display, e.g., displaying the value of digitized video data.

Magnitude mode can also be used to speed up embedded software

debug by displaying the value of the processor’s address group over

time. This is particularly useful as an overview tool. The information

provided shows where in the memory map the processor is spending

it’s time. If it appears that the processor is spending an inordinate

amount of time in a particular memory region (usually indicated by a

relatively flat line), you can move either of the cursors anywhere on the

line and open a new Listing Window or Source Window. You can then

see what particular code is executing and whether this is a symptom

of a deeper problem. If needed, you can always rely upon the

TLA700’s 500 ps timing resolution or 200 ps analog capability, to

quickly zero in on the underlying root cause (see Figure 6).

Conclusion

The TLA700’s integrated software tools, such as HLL source code sup-

port, symbolic capabilities, performance analysis, and magnitude mode

support, allow embedded software developers to effectively work with

hardware developers in solving difficult cross-domain problems. Third-

party HLL source-level debuggers with run-control installed on the

TLA700 provides all members of the digital design team with a power-

ful set of hardware and software tools to resolve those difficult cross-

domain problems.

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com6

Figure 6. Magnitude Mode.

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com 7

Using The TLA700 Integrated Software Tools
Technical Brief

www.tektronix.com8

Contact Tektronix:

ASEAN Countries & Pakistan (65) 6356 3900

Australia & New Zealand (65) 6356 3900

Austria +43 2236 8092 262

Belgium +32 (2) 715 89 70

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Central Europe & Greece +43 2236 8092 301

Denmark +45 44 850 700

Finland +358 (9) 4783 400

France & North Africa +33 (0) 1 69 86 80 34

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-2275577

Italy +39 (02) 25086 1

Japan (Sony/Tektronix Corporation) 81 (3) 3448-3111

Mexico, Central America & Caribbean 52 (55) 56666-333

The Netherlands +31 (0) 23 569 5555

Norway +47 22 07 07 00

People’s Republic of China 86 (10) 6235 1230

Poland +48 (0) 22 521 53 40

Republic of Korea 82 (2) 528-5299

Russia, CIS & The Baltics +358 (9) 4783 400

South Africa +27 11 254 8360

Spain +34 (91) 372 6055

Sweden +46 8 477 6503/4

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Copyright © 2002, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and
foreign patents, issued and pending. Information in this publication supersedes that in all
previously published material. Specification and price change privileges reserved. TEKTRONIX and
TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service
marks, trademarks or registered trademarks of their respective companies.
03/02 OA/XBS 52W-12480-1

For Further Information
Tektronix maintains a comprehensive, constantly expanding collec-
tion of application notes, technical briefs and other resources to help
engineers working on the cutting edge of technology. Please visit
www.tektronix.com

